LFTF: A Framework for Efficient Tensor Analytics at Scale

نویسندگان

  • Fan Yang
  • Fanhua Shang
  • Yuzhen Huang
  • James Cheng
  • Jinfeng Li
  • Yunjian Zhao
  • Ruihao Zhao
چکیده

Tensors are higher order generalizations of matrices to model multi-aspect data, e.g., a set of purchase records with the schema (user id, product id, timestamp, feedback). Tensor factorization is a powerful technique for generating a model from a tensor, just like matrix factorization generates a model from a matrix, but with higher accuracy and richer information as more attributes are available in a higherorder tensor than a matrix. The data model obtained by tensor factorization can be used for classification, recommendation, anomaly detection, and so on. Though having a broad range of applications, tensor factorization has not been popularly applied compared with matrix factorization that has been widely used in recommender systems, mainly due to the high computational cost and poor scalability of existing tensor factorization methods. Efficient and scalable tensor factorization is particularly challenging because real world tensor data are mostly sparse and massive. In this paper, we propose a novel distributed algorithm, called Lock-Free Tensor Factorization (LFTF), which significantly improves the efficiency and scalability of distributed tensor factorization by exploiting asynchronous execution in a re-formulated problem. Our experiments show that LFTF achieves much higher CPU and network throughput than existing methods, converges at least 17 times faster and scales to much larger datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of interwoven integration practices on supply chain value addition and firm performance

Drawing on the supply chain (SC) management literature, this article conceptualizes and empirically tests a framework that shows how both external and internal integration practices are significant and positively associated with SC value addition and firm performance. The framework also tests the impact of value addition as a reinforcing factor on firm performance. The outcome of this investiga...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

Tensor scale: An analytic approach with efficient computation and applications

Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as "tensor scale" using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotr...

متن کامل

An analytic approach to tensor scale with efficient computational solution and applications to medical imaging

Scale is a widely used notion in medical image analysis that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, a notion of local morphometric scale referred to as “tensor scale” was introduced using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the prev...

متن کامل

Decomposition of Big Tensors With Low Multilinear Rank

Tensor decompositions are promising tools for big data analytics as they bring multiple modes and aspects of data to a unified framework, which allows us to discover complex internal structures and correlations of data. Unfortunately most existing approaches are not designed to meet the major challenges posed by big data analytics. This paper attempts to improve the scalability of tensor decomp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017